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OPTIMAL UTILIZATION OF TOTAL ELASTIC SCATTERING CROSS SECTION DATA

FOR THE DETERMINATION OF INTERATOMIC POTENTIALS

R. B. Bernstein and R. A, La!:Ba&dde

Theoretical Chemistry Institute and Chemistry Department
University of Wisconsin, Madison, Wisconsin 53706

ABSTRACT

With the advent of improved experimental data on absolute total cross

sections Q(v) for atom-atom collisions and their velocity dependence, on

the glory undulations and the transition to high-velocity behavior, it

is timely to reconsider the problem of inversion of such data to yield

information on the interatomic potential. In the absence of additional

data in the form of differential cross sections there is a limit to the

amount of information available from Q(v) even when observations of good

accuracy (e.g., ± 0.25%) are in hand over an extended energy range (e.g.,

3
from "thermal" energies upward by a factor of > 10 in relative kinetic

energy). A number of commonly used procedures for data inversion are no

longer adequate to deal optimally with the high quality experimental

results now becoming available. The present paper attempts to develop

improvedmethods for data utilization, which take full advantage of the

accuracy of the experimental Q(v) measurements.

Supported by the National Science Foundation Grant GB-16665 and the
National Aeronautics and Space Administration Grant NGL 50-002-001.

T.L



1

I. INTRODUCTION

It was recognized in 1934 by Massey and Mohrl that total cross sections

for the elastic scattering of atoms by atoms could yield information on

the interatomic forces, particularly the long-range part of the inter-

action potential. At about the same time the experimental (beam) techniques

for making such measurements (as originated by Born, 
2 a

Bielz and Knauer

and Stern in Germany during the previous decade) were brought to fruition

quantitatively by Mais, Rosin and Rabi3 in the U.S.A., by Sasaki, Nishibori,

Kodera and co-workers4 in Japan and by Fraser and Broadway5 in England.

In 1935 the status of the subject as a "new kinetic theory of gases" was;

Tstablished. in a summary by Rabi, which complemented an overall review.

on molecular beam scattering by Guillemin.6b In 1936 Massey and Bucking-

ham7 showed how existing total cross section data for alkali-rare gas

systems could be utilized to ascertain the magnitude of the long-range,

London dispersion "C6 constant," i.e., the coefficient of the asymptotic

attractive potential V(r.)- -C /r
s

, where for S-state atoms s = 6. These

experimentally-derived coefficients compared well with theoretical estimates

based on the Slater-Kirkwood-Hellmann (SKH) approximations.

A rather small number of experimental studies on total cross sections

Were carried out over the next two decades, however. One of the more

extensive of these was a series of measurements (and theoretical cor-

relations) of total cross sections for the scattering of numerous atom-

atom and atom-molecule systems, reported in 1959. All of the experiments

dp to this time had involved the scattering of thermal (Maxwellian) beams

by thermal "target" gases, so that the resulting cross sections were all

heavily velocity-averaged. However, the interesting possibility of

verification of the asymptotic interatomic force law, i.e., determination
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of the inverse power s in the long-range potential, from the velocity-

dependence of the cross section had been known since the appearance of

the original Massey-Mohr (MM) equation, which can be written in the form

Q(V= ) (CS / Any -1

Here the constant of proportionality FM,(s) is a known, slowly-varying

function of s , and v is the relative velocity.

In 1960 the first experimental study of the velocity-dependence of

the total cross section was reported, by Pauly, for the K-N2 system.

Here s was found to be 6 (within an uncertainty of about 10%), con-

firming the theoretical expectation, thus indirectly establishing con-

fidence in the procedure for determining C6 values from "absolute" values

of thermally-averaged total elastic scattering cross sections.

Three sources of doubt remained, however, in the resulting potential

constants C
6 .

One involved the possibility of systematic experimental

errors in the cross sections. This suggested itself from the fact that

many of the experimentally-derived C6 constants were significantly larger

than theoretically estimated (SKH) values, although ratios of C6 values

10 11
were in excellent agreement with theory. The source of this error

was determined and previous experimental results corrected as required.

The revised C6 constants accorded well with SKH-approximated values, and

even better with the more rigorous perturbation-theory results of Dalgarno

and co-workers.1 2

Another source of doubt was the validity of the MM approximation in

general, and in particular the magnitude of the constant 1nn(s) in Eq.(1.).

Even on the assumption of a pure r-6 potential, several different approxi-Even on the assumption of a pure r potential, several different approxi-



mation formulas had been derived in the literature,13 each having employed

somewhat different assumptions. All of these yielded the same functional

form of the velocity dependence as the MM equation, but slightly different

coefficients p(s). Table 1 lists the values of p(6) thus obtained. Not

14
included are results of three other approximate treatments, based on

the application of the uncertainty principle, which lead to the same MM

form but whose p values are inherently less accurate.

Table 1. Values of p(6) according to different approximations

Massey-Mohr
1

Firsov
1
3 a Schiff

1
3 b Landau-Lifshitz

13 c

p(6): 7.547 8.037 8.083 8.083

On the basis of a comparison with sample exact calculations (for a pure

repulsive r -power potential) it was concluded13d that the Schiff- I

Landau-Lifshitz (SLL) coefficient PSLL was to be preferred over PMM'

However, the entire range of p(6) values of Table 1 is only 7.1%, so that

in any case the uncertainty in the derived C6 from a given Q is confined

to a span of ca. 18%.

A third source of doubt was the possible influence of the next higher-

-7
order terms in the long-range potential, e.g., the r retardation term

and/or the r dipole-quadrupole contribution. A perturbation-like treat-

15
ment of these effects on the total cross section has been carried out, 

which indicated that the more important effect (at "thermal" conditions)

-8
was due the r term, the incremental cross section being approximately

T1,, where 1 = C8/C6 . Recent theoretical calculations of D by

Davison, though. significantly larger than values from the older litera-

16 -8
ture, have led to the conclusion that the r term makes only a small

3
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contribution to the cross section at thermal energies for the typical

systems investigated. Nevertheless, the presence of this extra contribution

to the cross section, which is to a first approximation velocity-independent, 5

could make itself known via a deviation from the v form of Q(v)

(cf. Eq.(l)) This type of deviation was observed by Beck and Loesch1 7

for the K-Kr and K-Xe systems. The direction and magnitude of the effect

was in accord with that expected on the basis of Refs. 15a and 16. How-

ever the results cannot be considered to be definitive evidence for the

C8 contribution, since any additive attractive contribution to the potential

over and above the asymptotic form V- -C6 /r6 would introduce a quali-

-2/5
tatively similar deviation from the v velocity dependence. It is

therefore difficult to extract from Q(v) data definitive information on

-6
such "correction terms" to the r potential tail.

Schlier and co-workers 8 have shown by means of calculations based

on a flexible model potential (termed "realistic") that the Q , averaged

over the glory undulations, can differ significantly from the QSLL based

upon the C6 assumed for the model potential. This is presumably due to

the fact that the range of r probed by the Q measurements (over the

velocity range considered) extended inward to smaller separations than

those for which the potential could be well approximated by its asymptotic

form, i.e., in the region of r near (Q/2r) 1/2 V(r) t -C6/r6

A clear experimental indication of this difficulty is seen from the

recent work of Pauly and associates. For the systems Na-, K-, and

Cs-Hg for which a full "Buck-inversion"
2 0

of all scattering data has

yielded the "true" potentials,
19 a ,2 0 b Buck et al. showed that even at

their largest reduced separation z = r/rm = 2 , where IVI /e n 0.015,

-8
the C r and higher terms constitute a significant contribution to the8
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potential. Specifically, for Na-Hg, using the best theoretical estimate

for C6 one calculates that the C6 r term accounts for only slightly

more than half the total potential2 0 b at this separation (of 9.4A).

2 2This result, if found to be representative, would call into

question the practical usefulness of the long-range perturbation expansion

23
in reciprocal powers of r. Certain and Bruch, reviewing the question

of the validity of the long-range expansion, indicate that the higher

multipole terms (i.e., C8, C10 etc.) become important at about the same

r as the exponential overlap terms. They state that "it rarely makes

sense to include higher order multipole terms while neglecting overlap

terms'!. One might say;that when the leading term does not suffice, the use-

fulness of the series expansion ]is-doubtful.., Nevertheless one must be careful not to

"throw out the baby with the bath water". At present, total cross sections

constitute the only "direct" source of information about the C constants

and have, on the whole, yielded values in fair accord with theory.

Croucher and Clark2 4 compare all available theoretical and experimental

(i.e., from thermal Q data) C6 values for alkali atom interactions with

25
atoms and non-reactive diatomics; with a few notable exceptions the

results are within mutual uncertainty limits. Clearly the dominant term

in the total cross section is that due to the asymptotic C6 coefficient.

However, a proper inversion of Q(v) data is highly desirable. Attempts

in this direction by several workers2 6 have not yet been put into practice.

Irrespective of this problem (the higher-order deviations from, a

pure r -dependence in the range of r probed by thermal Q(v) measurements),

the influence of the potential well and the short-range repulsive force is

a separate and important question. It was pointed out in 1961 7 that

extrema in the velocity dependence of the cross section for atom-atom
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scattering would thereby be expected. These "glory undulations" could be

understood27c28 from semiclassical considerations, and the extrema

indexed unambiguously.27 A Jeffreys-Born (JB) (high-energy)' approximation

for the velocity-dependent maximum phase shift am was derived2 7 b,c

making it possible to express the index N of the glory extremum as a

linear function of - (valid in the high-velocity limit). Here vN is
vN

the velocity of the Nth glory extremum, determined from'a plot of

AQ = Q - Q vs. 1/v (where Q ismthe local mean of Q. averaged over

the undulations) or of vQ 5 /2 [dr (C6)app] vs. 1/v (where (C6)app is

-6
the apparent C6 value assuming a dominance of the r6 term in V(r) and

Eq. i and a T(6) from Table 1). The limiting form of 7m(v)2 7 suggested

3 -1
that the slope of a plot of N-8 vs. vN (say I) is proportional to the

product :Er

m ) G (2)

where al is a constant which depend§ upon the functional form of V(r).

'The quantity al was evaluated for.several-realistic model potentials:

it varied over the range 0.34 - 0.50 for the cases examined, and was

found to depend primarily on the reduced curvature, A , of the potential

minimum (being less sensitive to other features of potential functions).

Thus, on the assumption of a functional form or model potential, for which

al was known, -rm could be evaluated from the measured I or

al r 
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In an attempt to extract further information from the glory-velocities,

Bernstein and O'Brien carried out a higher-order expansion of ?m in

terms of reciprocal powers of velocity and of energy,30 assuming various

model potentials. Out: of this arose an improved procedure for utilizing

precise extrema data which involved a graph (designated3 1 a BOB plot) of

(N- )vN vs. l/EN (where EN = 22eVN), whose intercept is the I of

Eq.(~ and "limiting slope" S1 . For the commonly used model potentials

it was found that the quantity 2 r could be directly determined from

S1 essentially independent of K. (to be contrasted with the relation

between Gr and I , via the al of Eq.(2).

The BOB procedures were criticized by several workers, however, on

several -counts. First, as recognized from the outset, itdid not take

advantage of data on the glory amplitudes, which contain information on

the potential.2 8 Second, the deduction3 0 that al depended primarily

upon the curvature ?K was empirical, based only on a few simple model

potentials. The failure of this correlation was pointed out by DUren

and Schlier
18 a

by the counterexample of a flexible, multiparameter,

potential for which K could be varied independently of a1 . The most

penetrating analysis was that of Mason, Munn et al. who showed the

origin of glory undulations by an optical analogy. They found that the

extrema-spacing (and thus al) is better-correlated with the (reduced)

"area" of the potential well than with K , so that to a fair approxi-

mation (i.e., within a range of ± 20% for all model potentials tested,

including the pathological square-well):

oo

I oC fv(r)r (3)r
a-
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where dr is the (usual) zero of the potential. Third, in the case of

the alkali-Hg systems, certain discrepancies have arisen. For Li-Hg the

potential derived from Q(v) data and.a BOB-treatment by Rothe and Vene-

klasen3 3 (as extended by Olson,3 4 a whose analysis took cognizance of some

angular distribution data ) appears to violate the empirical "Similar

Potential Hypothesis" of Stwalley, when compared with the Na-Hg and

K-Hg potentials. A still more damaging finding was that of Buck et al.

who compared the potential parameters of Na-Hg estimated from a BOB

analysis ofwtheir-Q(v) data with the "true values" (from a full "Buck-

inversion"), and found a discrepancy of some 20% in 2 r . They attri-

buted this3 6 to a difference in the BOB expansion coefficients (for 7M)
characterizing the actual V(r) for the alkali-Hg systems, and those for

the model potentials of Ref. 30. At this stage it therefore becomes

necessary to face the main question directly: given extensive data of

*good (but finite) accuracy) on glory extrema in the thermal energy (so-

called "low-velocity") range, i.eo, Q(v) as discussed, how much in-

formation on the interatomic potential is available, i.e., how much can

be extracted from such data, and what is an optimal procedure to accomplish

this goal? The present paper addresses itself to this problem.
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II. FORPMAL RELATIONSHIPS

The total cross section Q(v) is assumed to be a sum of two components:

a smoothly varying Q(v), dependent primarily upon the long range potential

2 7,28
constant C6, and AQg(v), an oscillatory term, causing the glory extrema:

Q (v = @ (v)t nQ#(V) (4a)

where Q(v) - QS,, (v) o° EU.,() 6,

Z R v) , LS 5,41 ( 2 - 3Tr) (4b)

where, as usual v is the relative velocity, k =, /v/6 is the associated

wavenumber, L is the glory angular momentum, ioe., the value of the
g

orbital quantum number i corresponding to m , the maximum phase shift,

and m is the second-derivative of 7m with respect to , evaluated

at 2=L
g

Introducing the reduced variables 7c,

~. :- L} /C r,,
where r is, as usual, the position of the minimum of V(r) Eq.(4b)may

be rewritten:

,,,Wd< 2v=] 4- '(', 2 ^5 q)(5)
, °1/s 25S
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Consider the following expansions based upon the high-velocity

limit:

= -/ A i -- m2 --t-''
-Y" EN Al(6a)

[3, .
73 o + (6b)

- % ",_ + -C t+- .. (6c)

P 6 E Er Ed 3

where E (-K) = E/E is the usual reduced energy (C being the depth

of the potential well).

It was shown3 0a that al, B , and cl are constants determined by

the reduced curvature of the potential and that A1,A 2,...,B1,B 2 ,...,

C1,C2Voo.- can be taken as constants independent of the form of the

potential and of (, C and r , at least within a certain class of

parameterized potentials. Under the (strong) assumption that they are

essentially "universal constants", the unknown character of m 1 i Y

and [d2 m
/d 2 J is completely specified by the values of al, Bo, and C1.

The following expansion is more pertinent for the purpose of obtaining
AQ via Eq. (5) than the expansion of Pg and ~ / 3 of Eqs. (6b,c):

AC K 'r: +% I tl, tl, H (7)

where go = Bo/I . As for the A's, B's, etc.)it will be seen below

that H1 ,H20 .. , are essentially independent of the form of the potential,

within the same class of parameterized potentials. Combining Eqs. (5),

(6a) and(7) leads to a simple expression for the glory contribution:
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(8a)

where

7wl Er i -( /4 AL A 33 _ fi (8b)

The problem of evaluating Q(v) of Eq; (4a)remains. Formally we may

write

Q()- QSLL (V) + f(j) , (9)

where [Q(v) is the "correction" for the higher order terms in the inverse

power expansion for V(r), which may be expected to be slowly-varying.

Fully aware of the caveats mentioned in Sdc. I, one can attempt to approxi-

mate this correction assuming only the dipole-quadrupole contribution.

It has been shown previously that when the C8 r term in the

potential begins to affect the cross section, its effect is to introduce

an additive correction to Q , essentially velocity-independent, namely

i&(V ) -- S a - 2w C8/C6 . (10)

Values of the 8 /C 6 ratio 1 6 range typicall y from 2 .72 f the He-He3 9

to 28A2 for Cs-Cs, so the C8 contribution to Q should be fractionally

small, though not negligible (see, however, Ref. 25). As discussed in



PRECEDING PAGE BLANK NQT E11MD
13

III. DETERMINATION OF THE EXPANSION COEFFICIENTS

Using the tabulated values of n ,d i , and [d
2

X/d ] given

by O'Brien3 7 the values of the coefficients (AiBi,CiHi) were determined

in the following way: the reference potential was taken to be of the

standard L.-J. (12,6) form, although for the purpose of comparison the

calculations were repeated for an Exp(o(,6) potential, with c( = 13.772.

Using 20 tabulated points in the range 1 c E ̀< 100, for each of

Eqs. (6a), (6b), (6c) and (7) a weighted (assumed constant relative

error) forward curvilinear regression was carried out for the pertinent

quantities (i.e., ' m Y g , etc.) with al,Bo, and l held fixed at

their theoretical known values. The regression was stopped when the

next term to be added was not significant at the 90% level (via the F-

test). The results are given in Table II. It was found that reproduction

to full accuracy of 7m was obtained by including terms to A4 in (6a),

and of ig /[- d2 7 /d , |1 using only the term H1 in (7).

In terms of these truncated forms, Eq. (8) becomes

Qx(V (TT r) o )) (lla)

where

(a)j _ -- _fr c; i + t A. 3 + At ) (llb)
£" £'E El

Isolating the velocity dependence and assuming H1,AL,...A4 to be constants,

Eq. (4) becomes (in the limit NQ(v)- 0):

±Y (V) - X(t (12a)g(v ) = r, v + ¥~ v I+ -~- c
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with

I- 9 - AI
CV vE , E -~ £ 

+

) (12b)

where 2(3

(13a)

L = (27r) l0 ( /2) (13b)

(13c)

(13d)

and E are free parameters.

Thus, given C6, go, al' rm, and 6, then 1j, ... 4 may be

calculated from Eqs. (13), using PSLL(6 ) = 8.083 from Table 1, and the

total cross section as a function of velocity given by Eqs. (12). Table

III shows a comparison of Q(v) calculated from Eq. (12) for a specified

JWKB
L.-J. (12,6) potential with computed JWKB cross sections Q .(v)'. The agree-

ment is exact within the accuracy of the Q JWKB(v).

Several remarks regarding the use of EqS. (12) are in order. Firstly,

it is necessary that Eqs. (4), together with (9) for At 0 , will

represent the actual cross sections over the energy range of interest,

i.e.,only the r 6 long-range term of the potential is significant.

Secondly, the use of Eq. (8) requires that the expansions of Eqs. (6)

and (7) converge sufficiently rapidly over the energy range of interest.
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(Note that the expansions are singular at E = 0 .) The coefficients

A1 ,...A4, H1 were found to be independent of the form of the potential

only for a specific class of two-parameter potentials and there is no

theoretical reason to believe that they are "unique" or "universal" to

all realistic interatomic potentials. In the general case, the best

values of Q(v) will be obtained using e LJ and r instead of-the
m

true-- lues E,r , where LJ and r are the potential constants for
m m

the L.-J. (12,6) potential which best fits the actual potential over

the region of r which most strongly affects the Q(v).
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Table III. Comparison of approximate Q(v) from Eq. (12) with QJWKB(v) calculationa

v (Km/sec)

1.585

1.63

1.73

1.83

1.94

2.05

2. 113

3.548

5.012

10.59

E

0.9159

0.9688

1.079

1.221

1. 372

1.532

1. 629

4.590

9.159

40.91

QJWKB(v) (2)

1124

1145

1114

1017

1021

1050

1031

805

681

551

Q (v) (82)

1121

1145

1114

1016

1020

1049

1030

805

681

552

a
L.-J. (12,6) potential for which, in general, al = 0.421559, go= 0.186299.

Here the specific parameters of the model are E = 13.3 cpe , r = 4.92 A,

C6 6 x 10-24 g [note:C6 = 2 Er = 3.73 x 105 pe - and /U= 9,69925 x 10 g [note:

1 cpe = 1 centipicoerg = 10 erg. ]

Calculated from Eq. (12).
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IV. FITTING OF EXPERIMENTAL DATA

From Eqs. (4), (8) and (9) it is possible to construct a hierarchy of

models for experimental total cross section data, which give successively

more information about certain potential parameters, but at the expense of

an increasing number of approximations concerning the form of the potential.

From Eq. (8) Q(v) goes through maxima- and minima when sin ~ = + 1.

These extrema are usually indexed2 7 bc in the order they occur, i.e.,

N = 1 for the first maximum, N = 1.5 the first minimum, etc., It has been

shown2 7 b'
c

that this requires (cf. Eq. (8b))

(-3)N ( E' + '1 2 + ^ (14)

The firstt'wo models to be presented are based upon Eq. (14) and the

"experimental" variable Y _ (N - 8)vN . The third model is based upon

Eq. (12).

A. Model I.

It is assumed the extrema indices N and extrema velocities vN have

been determined experimentally. The model for the experiment is

1(Y= I-+ SX XS9X (15)

where X = E . A curvilinear forward regression of the experimental data

is to be performed, keeping all terms that are significant (at, e.g., the

907% level). In general, the number of terms required to fit Eq. (15) will

depend upon the experimental energy range.
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Assuming that the expansion ?7m(E ) of Eq. (6a) holds over the

experimental range so that I, S1, S2 ..., are "experimental constants"

the following ansatz can be made:3

r = A, /r'/rrT (16a)

(S 12 :(2rn/.iy*)A, /(16b)

X$·~~~~~~~~~~~ = ( El rm/ A(16c)

With no other assumptions, a1 - rm can be determined from:

Cr m It. (2)

Under the additional assumption that A 1
and A2 for the unknown potential

are the same as for the "standard" potential (say, the L.-J.(12,6) form),

then

CTr .
hi Z ) (17a)

6 = Al S /A2S (17b)

which are the BOB equations (Ref. 30b).

B. Model II

Suppose N and vN are experimentally determined as above. If,

in addition to the assumptions of Model I, it is further assumed that

A1 ,...A4 are the same as those of the particular L.-J. (12,6) potential
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with the same E and r, the model is

y = T + S, Z, + E 5, Z= 5,I Z + Si Z~M~y = T -~~~I ISp~ i5/ - S. 2 _+ 6 2 5t/ 6 3 ~(18)

where A/ . Then the following ansatz can be made:

2, , (2)

e 2 r,= ,, S.(19)

If it is assumed that A1,...A4 are known ("universal constants") it is

more efficient to use Model II than Model I, since the lower number of

free parameters and correct functionality of Eq. (18) leads to smaller

confidence intervals of the coefficients I, S1, and E. It should

be noted that Models I and II are the same for energies sufficiently

high that the last two terms in Eq. (18) can be neglected.

C. Model III

Suppose that Eqs.(::8) hold. sufficiently well so that H1, and

A 1,...A 4 are constants over the experimental energy range, namely those

for a L.-J.(12,6) potential, and the only contribution to the non-

oscillatory cross section is QSLL. Then the following model for Q(v)

results:

(20a)

where 3++ ±Y4(- =W4C 2 W/- mijr (20b)
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where W = H1/E, and W. = A /E1 for = 1,2,3,4 If the assumptions
are vi theJ.n3y

are valid, then

By determining 1,

Eq. (21), estimates

d = PJLL(6)(el6/-a; ) /9
Pt (Lrrr -) /§S(CC 1:41

(2- Lf r 16m

y I CZ 4 r)", /'t,

t, 13, r4 and C from a nonlinear regression of

of C6, al r , and g may be obtained:

a, = I; S//

A I A br/LE

gfi t" 7/d; X r,/ a t( g 3/2

(21a)

(2lb)

(21c)

(21d)

(22a)

(22b)

(22c)

(22d)

Note that if there is a multiplicative bias in the apparent

Q(v) i.e., Qtrue () = (1 +f) Qapp (v) for some constant f , then ;the

values of 1 and r2 will be biased by exactly the same factor (1 *+ ).

If a small component due to the C8 term contributes to Q(v), this

may be included in the model by modifying Eq. (20a) to

(23)

where 5 is the P)(Q) of Eq. (10).

D. Remarks

It may be expected that the value of Model I will decrease as the

data extends into the low-velocity range, since the confidence intervals

- - - ' - - - - 7 --- - __

a(V) - K S - X v. (8 I+ CWo) S
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of the coefficients will become large. This reflects the deterioration

of the expansion of Eq. (6a).

While Model II extends the viable range of Eq. (6a) further into

the low-velocity region, this is done at the expense of assuming that

the potential "resembles" the L.-J.(12,6) functional form. Furthermore,

the nonlinearity in C of Eq. (18) will introduce a bias in the con-

fidence intervals calculated by this model.

Model III is the most powerful of the models in that C6 and go

may also be determined (and perhaps C8 ); it uses the full set of

observed Q(v), and requires no prior graphical analysis. On the other

hand, the estimates are more sensitive to contributions from terms of

the type -C /rn for n >6, and the model is strongly nonlinear in several
n

parameters ( Y3 , e4 ) , possibly leading to convergence problems in

the fitting procedure, and requiring fairly good initial estimates of

the parameters.

In any of the models, the use, of thettabulated values of H1

and A1 ,...A4 for a L.-J.(12,6) potential is tantamount to fitting the

parameters dependent upon these quantities to a "standard" functional

form of potential. For example, the 6 obtained from a fit of Model II

will not be the best estimate of the actual well-depth of the potential,

but the 6 which leads to the L.-J.(12,6) potential which best approxi-

mates the true potential. For this reason there may be differences for

potentials which cannot be well-represented by the "standard" form.

Furthermore, unless the true potential is close to the standard form,

the values of C and r will be "experiment-dependent", in the sense

that the "best" L.-J.(12,6) potential describing the total cross sections

will be different from the best for, say, the differential cross section,

as found frequently in the literature. This is, howeve; a defect of all

calculations involving a model potential form.
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V. Example Calculations

Three test cases were used to provide examples of the usefulness

of Models I and II. Case A is the set of 13 extrema data for the Na-Hg

19b
system of Buck et al. Cases B and C are hypothetical, representing

0o

a L.-J. (12,6) potential with E = 8 cpe, r = 4 A, where + 1/2% and + 1%

normally distributed errors have been added, respectively to the Q's.

Test calculations were carried out for this potential with no added error,

giving the expected results. A summary of the calculations appears in

Table IV. Cases B and C were intended to mimic case A; for each of the

cases there were 13 data in the range 1 < E < 10. (All of the data are

in the fairly low velocity range, where the results are expected to be

less precise.) It should be noted that the several estimates of al r
m

obtained for case A are of significantly better precision than the value

obtained from the "Buck-inverted" potential for this system.

Examples of the application of Method III are given in Table V.

Both cases D and E were L.-J. (12,6) potentials with < = 13.3 cpe and

o *
r = 4.92 A, with 48 data in the range 1 < E < 40, with + 1/2% (relative)

6
error in Q(v) added. For both cases D and E, C6 = 2 r, and for case

02 02
E, = 1 A (i.e., 5 2 A ). From the results it is seen that, at

least for this example, Method III is indeed sensitive to the presence

of C8 (even when S is small).

Examination of the results (Tables IV and V) leads to the following

conclusions: (1) the error intervals in the fitted parameters decrease

successively from Method I through III;-(2) a small amount of experimental

error induces successively larger errors in 2 r and in E,when the

*
data are mainly in the low E range; (3) the true values of the parameters

usually fall within the fitted error intervals.

Listings of FORTRAN IV programs which perform the fitting calculations

for Models I, II and III are given in Ref. 40.
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Table V. Example of the Use of Method III 
a

QUANTITY

C.V. (%)f

C6 xlO0 (cpe- 6 )

TRUE
VALUE

0.25

3.773

INITIALC
VALUE

3.78

.186299 .190

e (cpe)

a
1

rm(R)

al rm(cpe-X)

e2 rm (cpe2 - 8)

Cx 10- 5 ( cpe _8)

13.3 14.0

.421559 0,44

4.92 4.7

27.585 28.9

870 921

0

CASE D

C8= 0d C e

0.26 0.26

3.777 3.753
+.007 +.036

.212 .211
+.063 +.072

14.0 14.0
+1.0 +1.0

.435 .435
+.036 +.049

4.5 4.5
+.7 +.8

27.62 27.62
+.08 +.08

888 889
+35 +35

3.8+5.6

CASE

C= 0
d

8

0.39

3.776
+.011

.213
+.079

14.0
+1.5

.435
+.022

4.5
+. 7

27.62
+. 13

889
+52

E

C8 Oe

0.26

3.752
+.036

.212
+. 072

14.0
+1.0

.435
+.049

4.5
+.8

27.63
+.085

889
+35

- 7.4+5.7

Fit performed with assumed constant relative error.

+ indicate 95% confidence interval halfwidths from fit.

Fit for C8 # 0 was performed using C8 = 0 parameters as initial values.

d -8
Fit assuming no r term is present.

e it assuming a r term is present.

The coefficient of variation of the fit in %.

For case EJ - -
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VI. Concluding Remarks

Total cross sections Q(v) for the scattering of (S-state) atoms41

in the low-velocity region4 contain information primarily on the long-

range tail of the interatomic ( -state) potential. However, it appears

that over the region of r probed by the Q measurements the higher-

order terms in the inverse-power expansion of V(rj) (i.e.,those beyond

the leading r term) contribute significantly to the potential. Thus

it is not in general possible to extract from the smooth Q(v) measure-

ments (via the SLL approximation of Eq. (1)) accurate C6 values without

taking cognizance of the C8r and higher terms. The effect of this

deviation from asymptotic r dependence over the range of r affecting

the experiments is to yield a residual velocity dependence in the

"apparent" C6 calculated via Eq. (1) from the smoothed Q(v). Assuming

that, for values of r 3 R(v), where R(v) (Q(v)/2r) 1 /2 , V(r) can

be well-approximated by V(r) ~ - C6 r6 ( t -) , and provided that

over this range P/r << 1 , the influence of the r term is simply

to introduce a constant additive correction S(8 )Q to the SLL-approxi-

mated smoothed cross section,

The glory extrema-velocities and amplitudes are governed largely by

the characteristics of the potential well. The results show greatest

sensitivity to the "area of the well", which in turn is roughly pro-

portional to the product Gr and is strongly affected by the curvature

<. of the potential. The extrema-spacings (i.e., dN/d(l/vN), in a well-

defined limit) yield the quantity I Cal rm with good accuracy. The

primitive BOB analysis (intended to yield e 2r directly from the glory-
m

velocity data) suffers from the disadvantage that it is tied closely to
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the "similar potential" hypothesis, i.e., that the wells are all some-

what "similar" in shape, and, moreover, are similar to those of several

commonly used "realistic" interatomic potential functions, for which

the expansion coefficients (AL, A2, etc.) are essentially invariant

("universal") constants.

In the present paper improved procedures are developed for the

analysis of Q(v) data. The use of the given values of the expansion

coefficients Al .o.A4 ) HI1 al, go is, however, equivalent to fitting

the data to the best "model" potential (of one of the standard forms,

such as L.-J.(12,6), Exp(o(,6), etc.). Applying the methodology to

19b
the data of Buck et al. on N(vN) for the well-characterized Na-Hg

system indicates that the resulting potential can reproduce the vN

data to within experimental accuracy (here 0.3%). Since the thus-

derived potential differs significantly from the best V(r) determined

by the Buck inversion procedure employing all scattering data (including

differential cross sections, rainbows, etc.), the total cross section

data simply do not contain the desired information. At the very least,

if both AQ(v) and Q(v) data can be reproduced within experimental

error by the present procedures) then the data have been essentially fully

exploited; the derived potential is by definition "indistinguishable"

from the true potential until further data (either extended energy range

or angular distributions) can be used to remove the ambiguity.

The literature on neutral atom-atom and atom-molecule scattering

from the viewpoint of intermolecular force determinations is extensive

and has been reviewed by Bernstein and Muckerman in 196743 and by Schlier

44
in 1969 . In the Appendix is presented an annotated bibliography of

recent experimental papers which report total cross sections for systems
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involving only atoms and/or hydrogen molecules. The subject of dif-

ferential cross sections is beyond the scope of this paper but is

clearly an extremely important aspect of the general problem of the

experimental determination of interatomic potentials.4 5
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APPENDIX

ANNOTATED BIBLIOGRAPHY ON TOTAL CROSS SECTIONS (Since Ref. 43).

(Systems involving only atoms with atoms or hydrogen modlecules)

J. Politiek, J. Los, J. J. Schipper and A. P. Baede, Entropie 18, 82

(1967). K-He, Ne. High-velocity, transition region, Q(v).

G. E. Moore, S. Datz and F. Van der Valk, J. Chem. Phys. 46, 2012 (1967).

He - H2,D2' He - He, H2. High-velocity, 9(v).

H. L. Kramer and P. R. LeBreton, J. Chem. Phys. 47, 3367 (1967). Na - Ar,

Kr. Glories, Q(v).

F. von Busch, H. J. Strunck and C. Schlier, Z. Physik 199, 518 (1967).

Na - Ar, Kr, Xe; K - Ar, Kr, Xe; Rb, Cs - Kr. Glories, transition

region, Q(v).

M. Hollstein and H. Pauly, Z. Physik 201, 10 (1967). Na - Xe; K - Ar,

Kr, Xe; Cs - Ar, Kr, Xe. High-velocity, transition region, Q(v).

M. A. Fluendy, R. M. Martin, E. E. Muschlitz, Jr. and D. R. Herschbach, J.

Chem. Phys. 46, 2172 (1967). H - He, Ne, Ar, Kr, Xe, H2.

Transition region, Q(v).

R. D'uren and C. Schlier, J. Chem. Phys. 46, 4535 (1967). K - Ar. Glories,

Q(v).

Y. N. Belyaev and V. B. Leonas, Dokl. Akad. Nauk SSSR, 173, 306 (1967).

He - H2, D2. High-velocity, incomplete total cross sections.

R. K. Helbing, W. Gaide and H. Pauly, Z. Physik 208, 215 (1968).

He, H2, D2 - Ne, Ar, Kr, Xe. Glories, Q(v).

U. Buck and H. Pauly, Z. Physik 208, 390 (1968). Na - Kr, Xe. Glories,

Q(v).

F. von Busch and H. J. Strunck, Z. Physik 209, 474 (1968). Na, K - Ar;

Na, K, Cs - Kr. Thermal, relative Q's.
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R. Duren, G.'P. Raabe and C. Schlier, Z. Physik 214, 410 (1968). Li - Kr;

Na - Ar, Kr, Xe; K - Ar, Kr. Glories, Q(v).

P. Cantini, M. Cavallini, M. G. Dondi and G. Scoles, Phys. Letters 27A,

284 (1968). He, H2 - He, H2. Thermal, absolute Q's.

I. Amdur and A. L. Smith, J. Chem. Phys. 48, 565 (1968). He - H2, D
2
.

High-velocity, incomplete total cross sections.

R. K. Helbing and E. W. Rothe, J. Chem. Phys. 48, 3945 (1968). Li - D2.

Glory, Q(v).

E. W. Rothe and R. K. Helbing, J. Chem. Phys. 49, 4750 (1968). Li-Na, K,

Rb, Cs; Na - Cs. Glories, Q(v).

W. R. Eckelt, B. Schimpke and K. SchUgerl, Z. Phys. Chem. 68, 266 (1969).

He, Ar - Ar. Thermal region, Q(v).

H. J. Lassalle and K. Schiugerl, Z. Phys. Chem. 68, 277 (1969). K - Ar.

Thermal region, Q(v).

M. G. Dondi, G. Scoles, F. Torello and H. Pauly, J. Chem. Phys. 51, 392

(1969). He - He. Higher-order glories, Q(v).

S. O. Colgate, J. E. Jordan, I. Amdur and E. A. Mason, J. Chem. Phys. 51,

968 (1969). Ar - He, Ar, H2. High-velocity, incomplete total

cross sections.

W. C. Stwalley, A. Niehaus and D. R. Herschbach, J. Chem. Phys. 51, 2287

(1969). H - He, Ne, Ar, Kr, Xe, H2. Transition region, Q(v).

D. H. Winicur, E. L. Knuth and W. E. Rodgers, Entropie 30, 154 (1969).

Ar - Kr. Transition region, Q(v).

J. Politiek, J. J. Schipper and J. Los, Physica 49, 165 (1970). K - He,

Ne, Ar, Kr, Xe. High-velocity, transition region, Q(v).

C. J. Malerich and R. J. Cross, Jr., J. Chem. Phys. 52, 386 (1970). Na -

Ar, Xe; K - Ne, Ar, Kr, Xe; Cs - Kr, Xe. High-velocity, transition

region, Q(v).
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W. Neumann and H. Pauly, J. Chem. Phys. 52, 2548 (1970). Li, Na, K, Rb,

Cs - Hg; Na - Cs.. Glories, transition region, Q(v).

B. Baratz and R. P. Andres, J. Chem. Phys. 52, 6145 (1970). Ar - Ar.

Glories, Q(v).

S. 0. Colgate and T. C. Imeson, J. Chem. Phys. 53, 1270 (1970). Cs - He,

Kr, Xe. Thermal region, unresolved glories, Q(v).

K. T. McArdle and J. G. Skofronick, J. Chem. Phys. 53, 4403 (1970).

He - He. High-velocity region, Q(v).

H. Kanes, H. Pauly and E. Vietzke, Z. f. Naturforschg. 26a, 689 (1971).

Li - Cs. Glories, q(v).

G. D. Lempert, S. J. Corrigan and J. F. Wilson, Chem. Phys. Letters 8, 67

(1971). He - Ar, Ne - Kr, Xe. Transition region, glories, Q(v).

H. G. Bennewitz, H. Busse and H. D. Dohmann, Chem. Phys. Letters 8, 235

(1971). He - He. Higher-order glories, Q(v).

J. W. Bredewout, N. J. Bosman, A. G. Visser, J. Korving and C. J. Van den

Meijdenberg, Chem. Phys. Letters 11, 127 (1971). Ar - Kr.

Glories, Q(v).

U. Buck, K. A. KOhler and H. Pauly, Z. Physik 244, 180 (1971). Na - Hg.

Glories, Q(v).

H. P. Butz, R. Feltgen, H. Pauly, H. Vehmeyer and R. M. Yealland, Z.

Physik 247, 60 (1971). He, Ne, Ar, Kr, Xe - HD. Glories,

transition region, Q(v).

H. P. Butz, R. Feltgen, H. Pauly and H. Vehmeyer, Z. Physik 247, 70 (1971).

HD - HD, D2; D2-HD, D2. Transition region, Q(v).

R. Gengenbach, J. Strunck and J. P. Toennies, J. Chem. Phys. 54, 1830

(1971). He - H2. High-velocity, -transition region, Q(v).
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D. E. Oates and J. G. King, Phys. Rev. Letters 26, 735 (1971). He - He.

Low-velocity data, transition region, Q(v).

H. Moerkerken, M. Prior and J. Reuss, Physica 50, 499 (1971). Ar - H2.

Anisotropy of Q at fixed v.

U. Buck, M. Kick and H. Pauly, VII ICPEAC, 543 (1971). Na, K, Cs - Hg.

Glories, Q(v).

G. C. Angel and R. A. Giles, VII ICPEAC, 555 (1971). K - Cs. Thermal Q.

J. A. Phipps, J. E. Scott, Jr. and J. L. Shinn, VII ICPEAC, 559 (1971).

He - He, Ne, Ar, Kr, Xe; Ne - Ne, Ar, Kr, Xe; Ar - Ar, Kr, Xe;

Kr - Kr, Xe. Thermal, absolute Q's.

D. Bassi, A. Schutte, G. Scoles and F. Tommasini, VII ICPEAC, 561 (1971).

H - Hg. Glories, Q(v).

T. Nenner, VII ICPEAC, 564 (1971). Ar* - Ar, Kr, Xe. Glories, Q(v).

P. Cantini, M. G. Dondi, G. Scoles and F. Torello, VII ICPEAC, 648

(1971). He - He. Higher-order glories, Q(v).

H. G. Bennewitz, H. Busse, H. D. Dohmann and W. Schrader, VII ICPEAC, 651

(1971). 4He - 4He, 3He; He - He. Higher-order glories, Q(v).

R. Gengenbach, C. Hahn, J. P. Toennies and W. Welz, VII ICPEAC, 653 (1971:

He - He, H2. High-velocity, transition region, Q(v).

H. V. Lilenfeld, N. C. Lang, E. K. Parks and J. L. Kinsey, VII ICPEAC,

656 (1971). He - D2. Transition region, Q(v).

H. C. Moerkerken and J. Reuss, VII ICPEAC, 663 (1971). Ar, Xe - H2.

Anisotropy of Q at fixed v.

I. Kusunoki, Bull. Chem. Soc. Japan 44, 2067 (1971). K - He, - Ne,

-Ar,-Kr, - Xe. Glories, Q(v).

R. S. Grace and J. G. Skofronick, private communication (1972).

He - H2. Transition region, Q(v).
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